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Abstract

This study was designed to investigate the quality of data in the pre-hospital and emergency
departments when using a wearable vital signs monitor and examine the efficacy of a
combined model of standard vital signs and respective data quality indices (DQIs) for predicting
the need for life-saving interventions (LSIs) in trauma patients. It was hypothesised that
prediction of needs for LSIs in trauma patients is associated with data quality. Also, a model
utilizing vital signs and DQIs to predict the needs for LSIs would be able to outperform models
using vital signs alone. Data from 104 pre-hospital trauma patients transported by helicopter
were analysed, including means and standard deviations of continuous vital signs, related DQIs
and Glasgow coma scale (GCS) scores for LSI and non-LSI patient groups. DQIs involved
percentages of valid measurements and mean deviation ratios. Various multivariate logistic
regression models for predicting LSI needs were also obtained and compared through receiver-
operating characteristic (ROC) curves. Demographics of patients were not statistically different
between LSI and non-LSI patient groups. In addition, ROC curves demonstrated better
prediction of LSI needs in patients using heart rate and DQIs (area under the curve [AUC] of
0.86) than using heart rate alone (AUC of 0.73). Likewise, ROC curves demonstrated better
prediction using heart rate, total GCS score and DQIs (AUC of 0.99) than using heart rate and
total GCS score (AUC of 0.92). AUCs were statistically different (p50.05). This study showed that
data quality could be used in addition to continuous vital signs for predicting the need for LSIs
in trauma patients. Importantly, trauma systems should incorporate processes to regulate data
quality of physiologic data in the pre-hospital and emergency departments. By doing so, data
quality could be improved and lead to better prediction of needs for LSIs in trauma patients.
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1. Introduction

Pre-hospital treatment of trauma patients is a critical aspect of

emergency medical practice, but, in the past, has relied on the

training and experience of medical personnel using discrete

physiologic data points and not on continuous data [1,2]. In

addition, the ability to prioritise treatment beyond the point of

injury is often faced with many difficult challenges, including

erroneous measurements, loss of critical information and/or

information overload [3–5]. Because appropriate and timely

treatment means that life-saving interventions (LSIs) are

performed when needed during all echelons of care, better

data may lead to better LSI performance. Furthermore, since

measurement and interpretation of electronic vital signs have

become routine during pre-hospital and hospital care,

improved LSI performance will require maximum utility of

this data as well as improvements in data quality for rapid and

accurate decision-making [6–9].

Use of data quality indices is one possible solution for

assessing the quality of data during physiologic monitoring

and retrospective analysis of data [9,10]. Leveraging signal

quality indices to obtain signal-derived parameters has been

previously described [9,10], but has not been applied to the

prediction of LSIs or identification of patients requiring LSIs.

Furthermore, these indices focused on waveform (electrocar-

diogram) signal quality rather than numeric streams (standard

vital signs) such as blood pressure and heart rate. Because

trends, means and standard deviations of numeric streams are

potential tools for enhancing prediction of needs for LSIs,

they may be suitable for assessment of numeric data quality as

well [7,11,12]. We previously showed that a wearable/

portable vital signs monitor can lead to improved LSI

performance [11], since this technology allows for constant

acquisition of multiple non-invasive physiologic vital signs

across the entire critical care spectrum. However, the use of*Corresponding author. Email: nehemiah.liu@us.army.mil
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these devices is only advantageous when the quality of

captured data can be maintained with minimal noise and

minimal missing data. In addition, useful interfaces would

identify those patients who actually required an LSI, either

through some hypothesis-driven or evidenced-based model

or computer algorithm that could process the captured data

in real time [12].

This study was an initial effort between the US Army

Institute of Surgical Research and the University of Texas

Health Science Center in Houston, TX to quantitatively

investigate the quality of data in the pre-hospital and

emergency departments when using a wearable vital signs

monitor, particularly a Wireless Vital Signs Monitor (WVSM,

Athena GTX, Inc., Des Moines, IA), to provide care for the

trauma patient. The goal of this study was to examine the

efficacy of a combined model of standard vital signs and

respective data quality indices (derived from trends, means

and standard deviations) for predicting the need for LSIs in

trauma patients using multivariate logistic regression models.

We hypothesised that prediction of needs for LSIs in trauma

patients is associated with data quality in the pre-hospital and

emergency departments. Also, a model utilizing vital signs

and data quality to predict the needs for LSIs would be able to

outperform models using vital signs alone.

2. Patients and methods

2.1. Subjects and protocol

Approval to conduct this study was obtained from the

Institutional Review Board at our Institute and from the

Committee for the Protection of Human Subjects of the

University of Texas Health Science Center in Houston, Texas.

Because all data were analysed post-hoc, the study was

considered minimal risk and informed patient consent was

waived. The dataset consisted of 104 patients transported via

the Life Flight helicopter service to the Memorial Hermann

Hospital, a Level I trauma centre in Houston, TX, between 27

June 2011 and 6 January 2012. As previously described in the

protocol [11], these patients were all available pre-hospital

trauma patients who wore a WVSM system during transport

to the hospital. The Life Flight Helicopter service consisted of

three Eurocopter BK 117Bs and each helicopter flight crew

consisted of one experienced pilot, flight medic, and nurse.

Trauma patients discharged home from the emergency

department (ED) were not included in this dataset. In

addition, pregnant women, patients under 18 years of age

and patients transported from a nursing home were excluded

from the study. Patient inclusion criteria were as follows: (1)

patient was over 18 years of age, (2) Code 2/3 trauma patient

with blunt or penetrating trauma and (3) direct transport of the

patient from the injury scene to the hospital via helicopter

service [11].

2.2. Data and quality indices

For all subjects in this study, the WVSM was used to capture

numeric data (vital sign streams) at a rate of 1 Hz, electro-

cardiogram waveform data from a single lead at 230 Hz,

oxygenation waveform data from a thumb-mounted pulse

oximeter connected to the WVSM at 75 Hz and respiration

waveform data at 10 Hz when available. Upon patient arrival

to the ED, data were transmitted from the WVSM device

through a wireless connection and stored using a compu-

terised server system. Similarly, after the patient was moved

from the ED trauma bay, data collection was stopped.

Numeric data (standard vital signs) captured by the

WVSM included heart rate (HR), systolic blood pressure

(SBP), diastolic blood pressure (DBP), mean arterial pressure

(MAP), respiratory rate (RR), blood oxygenation (SpO2),

shock index (SI¼HR/SBP) and pulse pressure (PP¼SBP –

DBP). All demographic information, physical exam results,

Glasgow coma scale (GCS) scores (Motor, Verbal, Eye) and

field and ED LSIs were manually recorded on an electronic

run sheet (Tablet PCR, Zoll Medical, Chelmsford, MA) by

Emergency Medical Services medics. Later, the data was

entered into a study research database (https://openclinica.

com, OpenClinica, LLC, Waltham, MA) for future analysis.

LSIs consisted of endotracheal intubations, blood product

transfusions, tube thoracostomies, cardiopulmonary resusci-

tations, needle decompressions, cricothyrotomies, thoraco-

tomies and tourniquets.

Importantly, assessment of data quality of the WVSM was

made by determining the percentages of valid measurements

and non-zero waveform samples in each patient record and

visually inspecting the entire sequences of all waveforms.

Because trends, means and standard deviations are potential

tools for assessing quality of vital signs [7,11,12], two

separate data quality indices (DQIs) were derived from

corresponding vital sign measurements: (1) percentage of

valid measurements (those with numeric values, as

opposed to ‘‘not-a-number’’ or ‘‘NaN’’) and (2) deviation

ratio (m – s)/m *100, where m denotes the mean value and s
denotes the standard deviation of values in a vital sign

numeric sequence. The latter DQI was interpreted as a

percentage of deviation between valid measurements in a

sequence. These indices were also chosen for their practicality

and ease of computation and were incorporated into the

statistical analyses.

2.3. Statistical analysis

Data are expressed as means ± standard deviation. Due to the

small sample size, all data were analysed using non-

parametric Wilcoxon tests. Initial multivariate logistic regres-

sion analyses were also done for all subjects with independent

demographic variables (age, height, race and weight) and with

dependent vital sign variables (HR, SBP, DBP, MAP, RR

and SI). These analyses excluded DQIs. Factors that were not

significant (p40.05) were removed from the model via

backward elimination. A second set of analyses were done for

dependent vital sign variables (HR, SBP, DBP, MAP, RR

and SI) as well as DQIs in order to compare sensitivity and

specificity performance with the initial set. In addition, a third

and fourth set of analyses were performed for all subjects

in order to include GCS scores, with and without DQIs as

dependent variables, respectively.

The accuracy of the statistical models was assessed using

sensitivity and specificity scores. The power of demographics,

vital sign measurements, DQIs and GCS scores to identify

whether LSIs were performed was estimated using

DOI: 10.3109/03091902.2015.1054524 Data quality and life-saving interventions 317
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multivariate logistic regression. JMP version 9.0.0 (SAS

Institute, Cary, NC) and the R Language (http://www.r-

project.org/), a well-known open-source statistical software

package, were used for statistical analyses.

3. Results

The demographics of all subjects in this study are shown in

Table 1 and were not statistically different between patient

groups [13]. Specific injuries and interventions for LSI

patients are shown in Supplemental Digital Content 1. The

average flight time was 29.9 ± 44.1 min, the median flight

time was 19 min, the maximum flight time was 371 min and

the minimum flight time was 10 min. As such, lengths of

patient records varied, with an average length of

266.7 ± 131.4 min, and generally coincided with each flight

time as well as additional time spent in the pre-hospital

environment and trauma bay. Of these 104 patients, 72 (69%)

did not receive an LSI. The other 32 patients (31%) received a

total of 75 LSIs, as detailed in Supplemental Digital Content

1. Importantly, the demographics of the chosen population

[13] included HRs ranging from 53–140 beats per minute,

SBPs ranging from 70–180 mm Hg and various types of

injuries and LSIs (Supplemental Digital Content 1).

Moreover, 88.0% of HR, 79.8% of SpO2, 75.8% of blood

pressure (SBP, DBP, MAP) and 75.0% of RR measurements

were valid, i.e. non-NaN. Mean percentages of all measure-

ments (Figure 1) helped indicate variables for LSI model

development. Final variables (after backwards elimination) are

shown in Tables 2 and 3. Only these variables were used for

odds ratio calculations. For the first two sets of multivariate

logistic regression analyses, results showed that increasing

mean HR as well as decreasing total GCS score was associated

with an increased risk for LSIs. Age, height, race and weight

were removed from the final models via backward elimination

because they were not significantly associated with LSIs. In the

model for vital signs alone (see Table 2), odds ratios were 1.05

(95% confidence interval [CI]¼ 1.03–1.09; p50.0001) for

mean HR (per beats per minute increase). In the model for

vital signs and GCS scores (see Table 3), odds ratios were 1.05

(95% CI¼ 1.01–1.11; p¼ 0.02) for mean HR (per beats per

minute increase) and 0.68 (95% CI¼ 0.58–0.78; p50.0001)

for total GCS score (per unit increase).

Inclusion of DQIs in the multivariate logistic regression

analyses showed that decreasing the percentage of valid

Table 1. Demographics of patients.

Characteristics All LSI patients Non-LSI patients

Age, Mean ± SD 40 ± 16 43 ± 16 38 ± 15
Gender, n (%)

Male 82 (79) 26 (81) 56 (78)
Female 22 (21) 6 (19) 16 (22)

Race, n (%)
White/Caucasian 62 (60) 18 (56) 44 (61)
Black 11 (10) 3 (10) 8 (11)
Hispanic 23 (22) 11 (34) 12 (17)
Asian/Pacific 1 (1) 0 (0) 1 (1)
Not Recorded 7 (7) 0 (0) 7 (10)

Mechanism of injury, n (%)
Blunt 94 (90) 29 (91) 65 (90)
Penetrating 10 (10) 3 (9) 7 (10)

Eye/Motor GCS53 22 (21) 21 (66) 1 (1)
Eye/Motor GCS� 3 82 (79) 11 (34) 71 (99)
Total GCS 12 ± 5 6 ± 5 14 ± 1
Heart Rate* 93 ± 19 100 ± 21 90 ± 16
Systolic BP* 135 ± 22 129 ± 32 138 ± 15
Respiratory Rate* 17 ± 3 16 ± 5 18 ± 3

SD, standard deviation; WVSM, wireless vital signs monitor; LSI, life-
saving intervention; BP, blood pressure (mm Hg); age (years); heart
rate (beats per minute); respiratory rate (breaths per minute).

*Entry values taken from the run sheet.

Figure 1. Mean percentages of valid measurements for WVSM subjects.
Standard vital signs used for WVSM patient monitoring included heart
rate (HR), blood oxygenation (SpO2), systolic blood pressure (SBP),
diastolic blood pressure (DBP), mean arterial pressure (MAP), respira-
tory rate (RR), end-tidal carbon dioxide (EtCO2), temperature (Temp)
and Glasgow Coma Scale (GCS) score. Combinations of these vital signs
were also used to derive other measurements including shock index
(SI¼HR/SBP).

Table 2. Logistic regression models with various risk factors (excluding
GCS) for LSIs.

Variable Odds ratio for LSIs (95% CI)* p Value

Mean heart rate 1.05 (1.03–1.09) 50.0001
With quality indices

Mean heart rate 1.05 (1.02–1.08) 50.0001
% valid HR values 0.97 (0.95–0.99) 0.0037
(mHR – sHR)/mHR 0.92 (0.86–0.97) 0.0039

LSIs, life-saving interventions; GCS, Glasgow coma scale; HR, heart
rate; CI, confidence interval; mHR, mean value of HR sequence; sHR,
standard deviation of HR values in sequence.

*Odds ratios for measurements reflect per-unit increase.

Table 3. Logistic regression models with various risk factors (including
GCS) for LSIs.

Variable Odds ratio for LSIs (95% CI)* p Value

Mean heart rate 1.05 (1.01–1.11) 0.02
Total GCS score 0.68 (0.58–0.78) 50.0001
With quality indices

Mean heart rate 1.07 (1.02–1.15) 0.0074
% valid HR values 0.99 (0.95–1.03) 0.6601
(mHR – sHR)/mHR 0.91 (0.81–1.00) 0.0507
Total GCS score 0.66 (0.52–0.79) 50.0001
% valid GCS scores 1.00 (0.96–1.04) 0.8988
(mGCS – sGCS)/mGCS 0.79 (0.48–0.92) 0.0003

LSIs, life-saving interventions; GCS, Glasgow coma scale; HR, heart
rate; CI, confidence interval; mHR, mean value of HR sequence; sHR,
standard deviation of HR values in sequence; mGCS, mean value of
GCS sequence; sGCS, standard deviation of GCS scores in sequence.

*Odds ratios for measurements reflect per-unit increase.

318 N. T. Liu et al. J Med Eng Technol, 2015; 39(6): 316–321

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 0
5:

26
 0

9 
Se

pt
em

be
r 

20
15

 



www.manaraa.com

measurements and deviation ratio ((m – s)/m *100) were

also associated with an increased risk for LSIs. Although

patient records varied in length, as noted above, this did

not affect DQI calculations because DQIs were calculated

based upon means, percentages and standard deviations (see

Data and quality indices) and the WVSM itself was

consistent over time. In other words, the WVSM usually

yielded either good data or bad data for durations rather

than for sporadic time points (seconds). Thus, datasets

could exhibit high or low data quality indices, regardless of

their size. In the model for vital signs and data quality

indices (see Table 2), odds ratios were 1.05 (95%

CI¼ 1.02–1.08; p50.0001) for mean HR (per beats per

minute increase), 0.97 (95% CI¼ 0.95–0.99; p¼ 0.0037) for

percentage of valid HR values (per unit increase) and 0.92

(95% CI¼ 0.86–0.97; p¼ 0.0039) for HR deviation ratio

(per unit increase). In the model for vital signs, GCS scores

and DQIs (see Table 3), odds ratios were 1.07 (95%

CI¼ 1.02–1.15; p¼ 0.0074) for mean HR (per beats per

minute increase), 0.66 (95% CI¼ 0.52–0.79; p50.0001) for

total GCS score (per unit increase), 0.91 (95% CI¼ 0.81–

1.00; p¼ 0.0507) for HR deviation ratio (per unit increase)

and 0.79 (95% CI¼ 0.48–0.92; p¼ 0.0003) for GCS

deviation ratio (per unit increase).

Importantly, ROC curves (see Figure 2) demonstrated

better prediction of LSI needs in patients using HR and DQIs

(area under the curve [AUC] of 0.86) than using HR alone

(AUC of 0.73). Likewise, ROC curves (see Figure 3)

demonstrated better prediction using HR, total GCS score

and DQIs (AUC of 0.99) than using total GCS score and HR

(AUC of 0.92). All AUCs were statistically significant

(p50.05).

4. Discussion

This study was designed to investigate the importance of data

quality, especially when using a wearable vital signs monitor,

and how data quality may influence decision-making and

trauma systems. Unlike previous work [13], it was the first to

show that data quality could be used in addition to vital signs

for identifying trauma patients that required LSIs.

Furthermore, the utility of standard vital signs and DQIs for

predicting the need for LSIs in trauma patients was examined

by comparing the performances of different multivariate

logistic regression models. Previous studies analysed only

traditional vital signs [7] or a combination of heart-rate

variability metrics and machine learning [13,14] for dis-

criminating between LSI and non-LSI patients. In both cases,

neither used DQIs for identifying LSI patients and, therefore,

could not address how quality affected results. Recent work

reported the development and validation of a real-time LSI

prediction system, but also excluded DQIs in its analyses [12].

Importantly, this study demonstrated that multivariate

logistic regression models incorporating DQIs could increase

the prediction accuracy for this cohort. The hypothesis that a

model utilising a combination of vital signs and DQIs to

predict LSI needs could outperform models utilising only

vital signs was shown through comparisons of ROC curves

and AUC results. A strength of this work was that DQIs were

calculated based on means, percentages and standard devi-

ations and were, thus, applicable to every patient with data,

regardless of the patient’s record length.

A side gain of this work was the implicit validation of how

well the WVSM system performs in the real world using a

quantitative approach. From previous work and experiences

Figure 2. Receiver-operating characteristic curves for models (excluding
Glasgow Coma Scale scores). Receiver-operating characteristic curves
were obtained to examine the discriminating power of multivariate
logistic regression models (excluding Glasgow Coma Scale scores) for
the outcome of at least one life-saving intervention (LSI) in 104 subjects.
The curves demonstrated better prediction for models using both vital
signs and data quality indices (area under the curve [AUC] of 0.86) than
for models using only vital signs (AUC of 0.73).

Figure 3. Receiver-operating characteristic curves for models (including
Glasgow Coma Scale scores). Receiver-operating characteristic curves
were obtained to examine the discriminating power of multivariate
logistic regression models (including Glasgow Coma Scale [GCS]
scores) for the outcome of at least one life-saving intervention (LSI) in
104 subjects. The curves demonstrated better prediction for models using
vital signs, GCS scores and data quality indices (area under the curve
[AUC] of 0.99) than for models using only vital signs and GCS scores
(AUC of 0.92).
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as detailed in Liu et al. [11], the WVSM was shown to yield

data of comparable quality to state-of-the-art monitoring

systems (standard vital signs monitors) and lead to the

identification of the need for LSIs in the ED [11]. Thus, the

actual quality of the system was relatively good, without

periodic losses of signal, distortions or other errors. This

quality applied not only to numerical data, but also to

waveform data. Although the system performed relatively

well in the past, no quantitative analyses had been performed

prior to this study. This work showed that, given 104 patients

totalling more than 450 hours’ worth of vital signs data, the

WVSM system could yield at least 75% good data for blood

pressures, HR and RR (see Figure 1). Moreover, visual

inspection revealed that 79.8% (83/104) of electrocardiogram

and 85.6% (89/104) of pleth waveforms provided identifiable

morphology in at least half of their sequences, whereas

numerical analysis showed that, on average, 99.9% and 99.1%

of these waveforms, respectively, contained non-zero samples.

It is important to note here that data quality was measured

as seen from a wearable vital signs monitor. Hence, Figure 1

does not indicate that end-tidal carbon dioxide was almost

never present during the protocol and that GCS scores were

obtained only 82% of the time. Figure 1 only reveals that data

was not always captured due to unavailability of equipment,

errors in measurement or device failures. In fact, physical

exams (GCS scores) were always performed by the Life Flight

personnel and providers in the ED. A major implication of

this study was that trauma systems should incorporate

processes to regulate data quality of captured physiologic

data in the prehospital and emergency departments. By doing

so, data quality could be improved and lead to better

prediction of needs for LSIs in trauma patients.

Although it is reasonable to assume that higher data quality

could aid trauma patient care, the results of this study

suggested that LSIs are often performed due to incomplete

information or significant changes in vital signs (deviation

from mean values). This agrees with previous work by Chen

et al. [6] exploring use of trends for pre-hospital care as well

as Liu et al. [12] investigating the use of artificial intelligence

to relate measurement deviations with needs for LSIs. This

also supports evidence that continuous physiologic monitor-

ing could help improve LSI accuracy [5,12,15,16].

Advances in vital signs monitors [11] have made the

incorporation of electronic physiologic data recording suitable

for continuous data analysis [13], but will require both

successful data management and data integrity. The graphical

interface of a wearable vital signs monitor plays a significant

role in the course of patient care. This interface provides two

capabilities: (1) the capture of monitored data and other

information manually entered by medical personnel and (2) the

graphical display of this data [11]. The potential benefit of

these interfaces is related to the concentration of physiologic

measurements from disperse, often disparate, sources (e.g.

devices, sensors, electrocardiogram leads, pulse oximeter,

handcuff)—along with waveforms, trends, injury scores and

other markers of patient status—onto one screen, thereby

making data more easily accessible for comprehension and

analysis. In other words, the wearable wireless vital signs

monitor may help develop a cognitively shared framework for

understanding a patient’s severity of illness and treatment plan.

The development of wearable vital signs monitors and

interfaces for the pre-hospital and emergency departments

may, perhaps, suggest that real-time data processing, infor-

mation management and aesthetics play a constructive, if not

crucial, role in the diagnosis and treatment of trauma

patients [13]. Therefore, it is imperative that, when elec-

tronic vital sign measurements lose validity, interfaces must

alert medical personnel and even hide those measurements

in order to mitigate errors in communication and patient

assessment. In addition, clinically useful displays must show

trends of available data and identify those trauma patients

who may be at high risk, thereby providing decision support

capability. Lastly, they should assist medical personnel

working outside the sheltered environment of the hospital

by ensuring validity of the data through appropriate

indicators.

A key question is whether more data used during trauma

care actually results in better outcomes for the patient. In

principle it would seem that more data are better, but, as

recent work has shown with bedside alarms [17], that may not

necessarily be the case. The medical team can become

overwhelmed with information, making it difficult for them to

focus on salient parameters and make optimal decisions. This

study extends upon previous work [11] which analysed the

efficacy of using the WVSM device to predict the need for

LSIs in the ED. There multivariate logistic regression

analyses were used to show that the WVSM was a better

predictor of LSIs in the ED than standard vital signs monitors

currently used for patient care [11]. An LSI, rather than

mortality, was chosen as an end-point because of its

usefulness for pre-hospital triage [18] and the fact that LSIs

could help identify more patients requiring attention from

providers, treatment and resources of a trauma centre than

mortality. Because this study involved a dataset in which only

one patient out of 104 patients died, it did not focus or report

on mortality. Like previous work [11], this study employed

LSIs as patient outcomes and showed that additional

descriptions inherent to data (that is, data quality and

integrity), not necessarily more data, may improve outcomes.

In other words, metadata easily derived from existing data

could help facilitate care. By utilising this metadata in the

background and not adding it to displays, monitors could be

automated to alert providers about data quality and integrity

in order to ensure maximal usage of physiologic information

such as numeric and waveform data. It is possible that more

data can produce ‘‘false-positive’’ outcomes and, therefore,

must be examined carefully to warrant use of new

technologies and approaches in trauma care.

Like previous work [13], this study had several limitations,

including the small size of the dataset, lack of injury severity

scores and criteria for selecting the data. Thus, the results

were preliminary. Furthermore, this study did not consider

separate analyses for examining the discriminating power of

the models for the outcome of at least one pre-hospital LSI or

one ED LSI. A strategy similar to this study could be applied

to perform these analyses in the future [13].

Future studies may need to be conducted to further test

whether a lack of information is associated with a tendency to

perform LSIs more frequently. If so, trauma systems should

again incorporate processes to regulate data quality in the
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pre-hospital and emergency departments for process

improvement.
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